
CSC D70:
Compiler Optimization

Pointer Analysis

Prof. Gennady Pekhimenko

University of Toronto

Winter 2018

The content of this lecture is adapted from the lectures of
Todd Mowry, Greg Steffan, and Phillip Gibbons

• Basics

• Design Options

• Pointer Analysis Algorithms

• Pointer Analysis Using BDDs

• Probabilistic Pointer Analysis

2

Outline

Pros and Cons of Pointers

• Many procedural languages have pointers
– e.g., C or C++: int *p = &x;

• Pointers are powerful and convenient
– can build arbitrary data structures

• Pointers can also hinder compiler optimization
– hard to know where pointers are pointing
– must be conservative in their presence

• Has inspired much research
– analyses to decide where pointers are pointing
– many options and trade-offs
– open problem: a scalable accurate analysis

3

Pointer Analysis Basics: Aliases

• Two variables are aliases if:

– they reference the same memory location

• More useful:

– prove variables reference different location

4

int x,y;

int *p = &x;

int *q = &y;

int *r = p;

int **s = &q;

Alias Sets ?

{x, *p, *r}
{y, *q, **s}
{q, *s}

p and q point to different locs

The Pointer Alias Analysis Problem

• Decide for every pair of pointers at every program point:
– do they point to the same memory location?

• A difficult problem
– shown to be undecidable by Landi, 1992

• Correctness:
– report all pairs of pointers which do/may alias

• Ambiguous:
– two pointers which may or may not alias

• Accuracy/Precision:
– how few pairs of pointers are reported while remaining correct
– i.e., reduce ambiguity to improve accuracy

5

Many Uses of Pointer Analysis

• Basic compiler optimizations
– register allocation, CSE, dead code elimination, live

variables, instruction scheduling, loop invariant code
motion, redundant load/store elimination

• Parallelization
– instruction-level parallelism
– thread-level parallelism

• Behavioral synthesis
– automatically converting C-code into gates

• Error detection and program understanding
– memory leaks, wild pointers, security holes

6

Challenges for Pointer Analysis

• Complexity: huge in space and time
– compare every pointer with every other pointer
– at every program point
– potentially considering all program paths to that point

• Scalability vs. accuracy trade-off
– different analyses motivated for different purposes
– many useful algorithms (adds to confusion)

• Coding corner cases
– pointer arithmetic (*p++), casting, function pointers, long-jumps

• Whole program?
– most algorithms require the entire program
– library code? optimizing at link-time only?

7

Pointer Analysis: Design Options

• Representation

• Heap modeling

• Aggregate modeling

• Flow sensitivity

• Context sensitivity

8

Alias Representation

9

• Track pointer aliases
– <*a, b>, <*a, e>, <b, e>

<**a, c>, <**a, d>, …
– More precise, less efficient

• Track points-to info
– <a, b>, <b, c>, <b, d>,

<e, c>, <e, d>
– Less precise, more efficient

– Why?

a = &b;

b = &c;

b = &d;

e = b;

a b c

de

a

b

*a

e dc

*b

**a

*e

Heap Modeling Options
• Heap merged

– i.e. “no heap modeling”

• Allocation site (any call to malloc/calloc)

– Consider each to be a unique location

– Doesn’t differentiate between multiple objects allocated by
the same allocation site

• Shape analysis

– Recognize linked lists, trees, DAGs, etc.

10

Aggregate Modeling Options

Arrays

11

…
Elements are treated
as individual locations

or

Treat entire array
as a single location

or

Treat entire structure as a
single location

…

Elements are treated
as individual locations
(“field sensitive”)

Structures

or

Treat first element
separate from others

…

What are the tradeoffs?

Flow Sensitivity Options

• Flow insensitive
– The order of statements doesn’t matter

• Result of analysis is the same regardless of statement order

– Uses a single global state to store results as they are computed
– Not very accurate

• Flow sensitive
– The order of the statements matter
– Need a control flow graph
– Must store results for each program point
– Improves accuracy

• Path sensitive
– Each path in a control flow graph is considered

12

Flow Sensitivity Example
(assuming allocation-site heap modeling)

13

S1: a = malloc(…);

S2: b = malloc(…);

S3: a = b;

S4: a = malloc(…);

S5: if(c)

a = b;

S6: if(!c)

a = malloc(…);

S7: … = *a;

Flow Insensitive
aS7 

Flow Sensitive
aS7 

Path Sensitive
aS7 

{heapS1, heapS2, heapS4, heapS6}

(order doesn’t matter, union of all possibilities)

{heapS2, heapS4, heapS6}

(in-order, doesn’t know s5 & s6 are exclusive)

{heapS2, heapS6}

(in-order, knows s5 & s6 are exclusive)

int a, b, *p;

int main()

{

S1: f();

S2: p = &a;

S3: g();

}

Context Sensitivity Options
• Context insensitive/sensitive

– whether to consider different calling contexts
– e.g., what are the possibilities for p at S6?

14

int f()

{

S4: p = &b;

S5: g();

}

int g()

{

S6: … = *p;

}

Context Insensitive:

Context Sensitive:

pS6 => {a,b}

Called from S5:pS6 => {b}
Called from S3:pS6 => {a}

Pointer Alias Analysis Algorithms

References:
• “Points-to analysis in almost linear time”, Steensgaard, POPL 1996
• “Program Analysis and Specialization for the C Programming Language”,

Andersen, Technical Report, 1994
• “Context-sensitive interprocedural points-to analysis in the presence of

function pointers”, Emami et al., PLDI 1994
• “Pointer analysis: haven't we solved this problem yet?”, Hind, PASTE 2001
• “Which pointer analysis should I use?”, Hind et al., ISSTA 2000
• …

• “Introspective analysis: context-sensitivity, across the board”, Smaragdakiset
al., PLDI 2014

• “Sparse flow-sensitive pointer analysis for multithreaded programs”, Sui et
al., CGO 2016

• “Symbolic range analysis of pointers”, Paisanteet al., CGO 2016

15

Address Taken

• Basic, fast, ultra-conservative algorithm
– flow-insensitive, context-insensitive

– often used in production compilers

• Algorithm:
– Generate the set of all variables whose addresses are

assigned to another variable.

– Assume that any pointer can potentially point to any
variable in that set.

• Complexity: O(n) - linear in size of program

• Accuracy: very imprecise

16

Address Taken Example

pS5 =

17

T *p, *q, *r;

int main() {

S1: p = alloc(T);

f();

g(&p);

S4: p = alloc(T);

S5: … = *p;

}

void f() {

S6: q = alloc(T);

g(&q);

S8: r = alloc(T);

}

g(T **fp) {

T local;

if(…)

s9: p = &local;

}

{heap_S1, p, heap_S4, heap_S6, q, heap_S8, local}

Andersen’s Algorithm
• Flow-insensitive, context-insensitive, iterative
• Representation:

– one points-to graph for entire program
– each node represents exactly one location

• For each statement, build the points-to graph:

• Iterate until graph no longer changes
• Worst case complexity: O(n3), where n = program size

18

y = &x y points-to x

y = x if x points-to w
then y points-to w

*y = x if y points-to z and x points-to w
then z points-to w

y = *x if x points-to z and z points-to w
then y points-to w

Andersen Example

pS5 =

19

T *p, *q, *r;

int main() {

S1: p = alloc(T);

f();

g(&p);

S4: p = alloc(T);

S5: … = *p;

}

void f() {

S6: q = alloc(T);

g(&q);

S8: r = alloc(T);

}

g(T **fp) {

T local;

if(…)

s9: p = &local;

}

{heap_S1,
heap_S4,
local}

Steensgaard’s Algorithm

• Flow-insensitive, context-insensitive

• Representation:
– a compact points-to graph for entire program

• each node can represent multiple locations

• but can only point to one other node
– i.e. every node has a fan-out of 1 or 0

• union-find data structure implements fan-out
– “unioning” while finding eliminates need to iterate

• Worst case complexity: O(n)

• Precision: less precise than Andersen’s

20

Steensgaard Example

pS5 =

21

T *p, *q, *r;

int main() {

S1: p = alloc(T);

f();

g(&p);

S4: p = alloc(T);

S5: … = *p;

}

void f() {

S6: q = alloc(T);

g(&q);

S8: r = alloc(T);

}

g(T **fp) {

T local;

if(…)

s9: p = &local;

}

{heap_S1,
heap_S4,
heap_S6,
local}

Example with Flow Sensitivity

pS5 =

22

T *p, *q, *r;

int main() {

S1: p = alloc(T);

f();

g(&p);

S4: p = alloc(T);

S5: … = *p;

}

void f() {

S6: q = alloc(T);

g(&q);

S8: r = alloc(T);

}

g(T **fp) {

T local;

if(…)

s9: p = &local;

}

pS9 ={heap_S4} {local, heap_s1}

Pointer Analysis Using BDDs

References:

• “Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams”,
Whaley and Lam, PLDI 2004

• “Symbolic pointer analysis revisited”, Zhu and
Calman, PDLI 2004

• “Points-to analysis using BDDs”, Berndl et al,
PDLI 2003

23

Binary Decision Diagram (BDD)

24

Binary Decision Tree Truth Table BDD

BDD-Based Pointer Analysis

• Use a BDD to represent transfer functions

– encode procedure as a function of its calling context

– compact and efficient representation

• Perform context-sensitive, inter-procedural
analysis

– similar to dataflow analysis

– but across the procedure call graph

• Gives accurate results

– and scales up to large programs

25

Probabilistic Pointer Analysis

References:
• “A Probabilistic Pointer Analysis for Speculative

Optimizations”, DaSilva and Steffan, ASPLOS 2006
• “Compiler support for speculative multithreading

architecture with probabilistic points-to analysis”, Shen et
al., PPoPP 2003

• “Speculative Alias Analysis for Executable Code”, Fernandez
and Espasa, PACT 2002

• “A General Compiler Framework for Speculative
Optimizations Using Data Speculative Code Motion”, Dai et
al., CGO 2005

• “Speculative register promotion using Advanced Load
Address Table (ALAT)”, Lin et al., CGO 2003

26

Pointer Analysis: Yes, No, & Maybe

• Do pointers a and b point to the same location?
– Repeat for every pair of pointers at every program point

• How can we optimize the “maybe” cases?

27

*a = ~

~ = *b

Definitely Not

Definitely

Maybe

Pointer
Analysis

optimize

*a = ~ ~ = *b

Let’s Speculate
• Implement a potentially unsafe optimization

– Verify and Recover if necessary

28

int *a, x;

…

while(…)

{

x = *a;

…

} a is probably

loop invariant

int *a, x, tmp;

…

tmp = *a;

while(…)

{

x = tmp;

…

}

<verify, recover?>

Data Speculative Optimizations

• EPIC Instruction sets
– Support for speculative load/store instructions (e.g., Itanium)

• Speculative compiler optimizations
– Dead store elimination, redundancy elimination, copy

propagation, strength reduction, register promotion

• Thread-level speculation (TLS)
– Hardware and compiler support for speculative parallel threads

• Transactional programming
– Hardware and software support for speculative parallel

transactions

Heavy reliance on detailed profile feedback

29

Can We Quantify “Maybe”?
• Estimate the potential benefit for speculating:

Ideally “maybe” should be a probability.

30

Speculate?

Expected
speedup
(if successful)

Recovery
penalty

(if unsuccessful)

Overhead
for verify

Maybe

Probability
of success

Definitely Not

Definitely

Maybe

Conventional Pointer Analysis

• Do pointers a and b point to the same location?

– Repeat for every pair of pointers at every program
point

31

*a = ~

~ = *b

p = 0.0

p = 1.0

0.0 < p < 1.0

Pointer
Analysis

optimize

*a = ~ ~ = *b

Definitely Not

Definitely

Maybe

Probabilistic Pointer Analysis

• Potential advantage of Probabilistic Pointer
Analysis:
– it doesn’t need to be safe

Todd C. Mowry 15-745: Pointer Analysis 32

*a = ~

~ = *b

p = 0.0

p = 1.0

0.0 < p < 1.0

Probabilistic
Pointer
Analysis

optimize

*a = ~ ~ = *b

PPA Research Objectives

• Accurate points-to probability information
– at every static pointer dereference

• Scalable analysis
– Goal: entire SPEC integer benchmark suite

• Understand scalability/accuracy tradeoff
– through flexible static memory model

Improve our understanding of programs

33

Algorithm Design Choices

Fixed:
• Bottom Up / Top Down Approach
• Linear transfer functions (for scalability)
• One-level context and flow sensitive

Flexible:
• Edge profiling (or static prediction)
• Safe (or unsafe)
• Field sensitive (or field insensitive)

34

35

Traditional Points-To Graph
int x, y, z, *b = &x;

void foo(int *a) {

if(…)
b = &y;

if(…)
a = &z;

else(…)
a = b;

while(…) {
x = *a;
…

}
}

y UND

a

z

b

x

= pointer

= pointed at

Definitely

Maybe

=

=

Results are inconclusive

36

Probabilistic Points-To Graph
int x, y, z, *b = &x;

void foo(int *a) {

if(…)
b = &y;

if(…)
a = &z;

else
a = b;

while(…) {
x = *a;
…

}
}

y UND

a

z

b

x

0.1 taken(edge profile)

0.2 taken(edge profile)

= pointer

= pointed at

p = 1.0

0.0<p< 1.0

=

=
p

0.10.9
0.72

0.08

0.2

Results provide more information

Probabilistic Pointer Analysis Results
Summary

• Matrix-based, transfer function approach

– SUIF/Matlab implementation

• Scales to the SPECint 95/2000 benchmarks

– One-level context and flow sensitive

• As accurate as the most precise algorithms

• Interesting result:

– ~90% of pointers tend to point to only one thing

37

Pointer Analysis Summary

• Pointers are hard to understand at compile time!
– accurate analyses are large and complex

• Many different options:
– Representation, heap modeling, aggregate modeling, flow

sensitivity, context sensitivity

• Many algorithms:
– Address-taken, Steensgarde, Andersen, Emami
– BDD-based, probabilistic

• Many trade-offs:
– space, time, accuracy, safety

• Choose the right type of analysis given how the
information will be used

38

CSC D70:
Compiler Optimization

Memory Optimizations (Intro)

Prof. Gennady Pekhimenko

University of Toronto

Winter 2018

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

Caches: A Quick Review

• How do they work?

• Why do we care about them?

• What are typical configurations today?

• What are some important cache parameters that will
affect performance?

Optimizing Cache Performance

• Things to enhance:

– temporal locality

– spatial locality

• Things to minimize:

– conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

Two Things We Can Manipulate

• Time:

– When is an object accessed?

• Space:

– Where does an object exist in the address space?

How do we exploit these two levers?

Time: Reordering Computation

• What makes it difficult to know when an object is accessed?

• How can we predict a better time to access it?

– What information is needed?

• How do we know that this would be safe?

Space: Changing Data Layout

• What do we know about an object’s location?

– scalars, structures, pointer-based data structures, arrays,
code, etc.

• How can we tell what a better layout would be?

– how many can we create?

• To what extent can we safely alter the layout?

Types of Objects to Consider

• Scalars

• Structures & Pointers

• Arrays

Scalars

• Locals

• Globals

• Procedure arguments

• Is cache performance a concern here?

• If so, what can be done?

int x;

double y;

foo(int a){

int i;

…

x = a*i;

…

}

Structures and Pointers

• What can we do here?

– within a node

– across nodes

• What limits the compiler’s ability to optimize here?

struct {

int count;

double velocity;

double inertia;

struct node *neighbors[N];

} node;

Arrays

• usually accessed within loops nests

– makes it easy to understand “time”

• what we know about array element addresses:

– start of array?

– relative position within array

double A[N][N], B[N][N];

…

for i = 0 to N-1

for j = 0 to N-1

A[i][j] = B[j][i];

Handy Representation: “Iteration
Space”

• each position represents an iteration

for i = 0 to N-1

for j = 0 to N-1

A[i][j] = B[j][i];

i

j

Visitation Order in Iteration Space

• Note: iteration space  data space

for i = 0 to N-1

for j = 0 to N-1

A[i][j] = B[j][i];

i

j

When Do Cache Misses Occur?

for i = 0 to N-1

for j = 0 to N-1

A[i][j] = B[j][i];

i

j

i

j

A B

When Do Cache Misses Occur?

for i = 0 to N-1

for j = 0 to N-1

A[i+j][0] = i*j;

i

j

Optimizing the Cache Behavior of
Array Accesses

• We need to answer the following questions:

– when do cache misses occur?

• use “locality analysis”
– can we change the order of the iterations (or possibly data layout) to

produce better behavior?

• evaluate the cost of various alternatives
– does the new ordering/layout still produce correct results?

• use “dependence analysis”

Examples of Loop Transformations

• Loop Interchange

• Cache Blocking

• Skewing

• Loop Reversal

• …

(we will briefly discuss the first two next week)

CSC D70:
Compiler Optimization

Pointer Analysis &
Memory Optimizations (Intro)

Prof. Gennady Pekhimenko

University of Toronto

Winter 2018

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

